The use of an artificial roughness on a surface is an effective technique to enhance the rate of heat transfer to fluid flow in the duct of a solar air heater. Number of geometries of roughness elements has been investigated on the heat transfer and friction characteristics of solar air heater ducts. In this paper an attempt has been made to review on element geometries used as artificial roughness in solar air heaters in order to improve the heat transfer capability of solar air heater ducts. The correlations developed for heat transfer and friction factor in roughened ducts of solar air heaters by various investigators have been reviewed and presented.
Solar air heater, Artificial Roughness, Roughness Geometry, Reynolds Number, Friction factor, Nusselt Number
International Journal of Trend in Scientific Research and Development - IJTSRD having
online ISSN 2456-6470. IJTSRD is a leading Open Access, Peer-Reviewed International
Journal which provides rapid publication of your research articles and aims to promote
the theory and practice along with knowledge sharing between researchers, developers,
engineers, students, and practitioners working in and around the world in many areas
like Sciences, Technology, Innovation, Engineering, Agriculture, Management and
many more and it is recommended by all Universities, review articles and short communications
in all subjects. IJTSRD running an International Journal who are proving quality
publication of peer reviewed and refereed international journals from diverse fields
that emphasizes new research, development and their applications. IJTSRD provides
an online access to exchange your research work, technical notes & surveying results
among professionals throughout the world in e-journals. IJTSRD is a fastest growing
and dynamic professional organization. The aim of this organization is to provide
access not only to world class research resources, but through its professionals
aim to bring in a significant transformation in the real of open access journals
and online publishing.